📘 CLASS 11 – MATHEMATICS (Maharashtra Board)
🔹 1. Angle & Trigonometry
Radian & degree
Trigonometric functions
Graphs
Formulas
sin2θ+cos2θ=1\sin^2\theta + \cos^2\theta = 1sin2θ+cos2θ=1 1+tan2θ=sec2θ1+\tan^2\theta = \sec^2\theta1+tan2θ=sec2θ
🔹 2. Trigonometry – II
Compound angles
Transformation formulas
Formulas
sin(A+B)=sinAcosB+cosAsinB\sin(A+B)=\sin A\cos B+\cos A\sin Bsin(A+B)=sinAcosB+cosAsinB
🔹 3. Determinants & Matrices
∣abcd∣=ad−bc\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad – bcacbd=ad−bc
Matrix addition, multiplication, inverse.
🔹 4. Straight Lines
Slope
Equation of line
Formula
y=mx+cy = mx + cy=mx+c m=y2−y1x2−x1m = \frac{y_2 – y_1}{x_2 – x_1}m=x2−x1y2−y1
🔹 5. Circle
Equation of circle
(x−h)2+(y−k)2=r2(x-h)^2 + (y-k)^2 = r^2(x−h)2+(y−k)2=r2
🔹 6. Conic Sections
Parabola
Ellipse
Hyperbola
🔹 7. Sequence & Series
AP, GP
Formulas
an=a+(n−1)da_n = a + (n-1)dan=a+(n−1)d Sn=n2(2a+(n−1)d)S_n = \frac{n}{2}(2a + (n-1)d)Sn=2n(2a+(n−1)d) an=arn−1a_n = ar^{n-1}an=arn−1
🔹 8. Sets, Relations & Functions
Union, intersection
Types of functions
🔹 9. Complex Numbers
Form: a+bia + bia+bi
i2=−1i^2 = -1i2=−1
🔹 10. Limits & Differentiation
limx→0sinxx=1\lim_{x\to 0}\frac{\sin x}{x}=1x→0limxsinx=1 ddx(xn)=nxn−1\frac{d}{dx}(x^n)=nx^{n-1}dxd(xn)=nxn−1
📘 CLASS 12 – MATHEMATICS
🔹 1. Mathematical Logic
Statements
Truth tables
Logical connectives
🔹 2. Matrices & Determinants
Matrix inverse
Adjoint
Determinant properties
🔹 3. Trigonometric Functions
Compound angles
Inverse trigonometry
🔹 4. Pair of Straight Lines
ax2+2hxy+by2=0ax^2 + 2hxy + by^2 = 0ax2+2hxy+by2=0
🔹 5. Vectors
∣a⃗∣=ax2+ay2+az2|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}∣a∣=ax2+ay2+az2
Dot & cross product.
🔹 6. Three-Dimensional Geometry
Plane, line
Formula
x−x1a=y−y1b=z−z1c\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}ax−x1=by−y1=cz−z1
🔹 7. Linear Programming
Objective function
Feasible region
🔹 8. Differentiation
ddx(sinx)=cosx\frac{d}{dx}(\sin x)=\cos xdxd(sinx)=cosx (uv)′=u′v+uv′(uv)’=u’v+uv’(uv)′=u′v+uv′
🔹 9. Applications of Derivatives
Maxima-minima
Rate of change
🔹 10. Integration
∫xndx=xn+1n+1\int x^n dx = \frac{x^{n+1}}{n+1}∫xndx=n+1xn+1 ∫1xdx=ln∣x∣\int \frac{1}{x} dx = \ln|x|∫x1dx=ln∣x∣
🔹 11. Definite Integrals
∫abf(x)dx\int_a^b f(x)dx∫abf(x)dx
🔹 12. Differential Equations
dydx+Py=Q\frac{dy}{dx} + Py = Qdxdy+Py=Q
🔹 13. Probability
P(E)=Favourable outcomesTotal outcomesP(E) = \frac{\text{Favourable outcomes}}{\text{Total outcomes}}P(E)=Total outcomesFavourable outcomes